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1. Introduction and summary

The H+
3 model on a sphere was solved ten years ago thanks to the methods of the con-

formal bootstrap [1], which rely on symmetry and consistency assumptions and do not

exploit the Lagrangian definition of the model. It was later realized that concordant in-

formation on the structure constants of the H+
3 model could independently be derived

thanks to the so-called free-field approach [2 – 4], which consists of perturbative calcula-

tions based on the Lagrangian definition. Then, after the AdS2 D-branes in AdS3 [5],

Euclidean AdS2 D-branes were discovered in H+
3 [6, 7], which is the Euclidan version of

AdS3. The worldsheet description of strings ending on such D-branes is the H+
3 model

on a disc with maximally symmetric boundary conditions. The solution of this model by

conformal bootstrap methods was recently completed [8, 9].

These developments have left the problem of the Lagrangian definition of the H+
3

model on the disc open. In other words, what is the boundary action for the Euclidean

AdS2 D-branes? This action may be useful for obtaining a more synthetic perspective on

the model, relating it to other models, and solving it on higher genus Riemann surfaces

with boundaries. Path-integral calculations were indeed very helpful in the recent study of

the H+
3 model on higher genus closed Riemann surfaces [10].

The problem of finding the boundary action was addressed by Ponsot and Silva [11],

who showed that the variations of the bulk H+
3 action already vanished by themselves

in the presence of AdS2 D-branes. They concluded that the boundary action vanished.

However, AdS2 D-branes come in a family with a continuous parameter c, and the results

of path-integral calculations should depend on c. One could try to impose the c-dependent

gluing conditions as constraints on the path integral, but it is not clear how to compute

the resulting constrained integral. Here, we will instead propose a boundary action (2.8)

which vanishes on-shell but nevertheless contributes to path-integral calculations. We will

show that the expected boundary conditions can be derived from this action.
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We will argue that the path-integral expressions of disc correlators which follow from

our boundary action agree with the known disc correlators. The argument relies on the

simple relation of the known disc correlators in the H+
3 model with disc correlators in

Liouville theory [8]. It was recently shown that the relation between H+
3 and Liouville

correlators on a sphere could easily be derived by a formal path-integral calculation [10].

We will sketch a similar calculation in the case of correlators on a disc.

We will also argue that the boundary action can be used for performing free-field

calculations. We will indeed first check that the boundary action preserves the expected

current-algebra symmetries. We will then compute the bulk one-point function and find

agreement with the conformal bootstrap result of [6, 7]. This free-field computation will

involve the explicit determination of a family of bulk-boundary Coulomb-like integrals (5.6).

We will actually only use particular cases of such integrals; the most general integrals would

appear in free-field calculations of bulk-boundary two-point functions in Liouville theory

and in the H+
3 model.

We are informed that a similar setup for the boundary dynamics of the H+
3 model

was found by T. Creutzig and V. Schomerus in connection with their work on the GL(1|1)

supergroup WZNW model [12].

The basic concepts of boundary conformal field theory and non-rational conformal field

theory which we will use are explained in the review articles [13, 14].

2. Classical analysis of the H
+

3 model with a boundary

Let us first define the bulk H+
3 model on the complex plane, which is conformally equivalent

to the Riemann sphere. We will parametrize the plane with a complex variable z = τ + iσ

and denote
∫∫

≡
∫

d2z; the single integration symbol
∫

will be reserved for integrals

over the boundary z = z̄ of the upper half-plane. The model is defined by the following

action, where we adopt the notations of [10] (while adding a “bulk cosmological constant”

numerical factor λ to the interaction term)

Sbulk =
1

2π

∫∫

(

∂φ∂̄φ + β∂̄γ + β̄∂γ̄ − λb2ββ̄e2bφ
)

. (2.1)

All fields are bosonic. The field γ has conformal dimension zero, the holomorphic field

β has conformal dimension one, and φ has conformal dimension zero but a background

charge b, so that the interaction term
∫∫

ββ̄e2bφ is conformally invariant with respect to

the holomorphic stress-energy tensor

T = −β∂γ − ∂φ2 + b∂2φ . (2.2)

Here b > 0 is a continuous parameter of the H+
3 model, which is related to the level k and

the central charge c by

b2 =
1

k − 2
, c =

3k

k − 2
. (2.3)
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The model actually has not only a conformal symmetry, but also an affine symmetry

generated by currents which we denote as

J− = β , J̄− = β̄ ,

J3 = βγ + b−1∂φ , J̄3 = β̄γ̄ + b−1∂̄φ ,

J+ = βγ2 + 2b−1γ∂φ − k∂γ , J̄+ = β̄γ̄2 + 2b−1γ̄∂̄φ − k∂̄γ̄ .

(2.4)

Euclidean AdS2 D-branes are maximally symmetric in that they preserve half of these six

currents. Strings ending on such D-branes are described by the H+
3 model on the complex

upper half-plane, with the following gluing conditions at z = z̄ [6, 11]:

J− + J̄− = 0 ,

J3 − J̄3 = 0 ,

J+ + J̄+ = 0 .

(2.5)

There is actually a one-parameter family of D-branes which satisfy such gluing conditions;

namely, for any real number c, we can assume that at z = z̄

β + β̄ = 0 ,

γ + γ̄ = cebφ ,

(∂̄ − ∂)φ = cbβebφ .

(2.6)

To these gluing conditions, one may add the bulk equations of motion for the β, β̄ fields,

which have no reason to fail at the boundary z = z̄:

∂γ̄ = λb2βe2bφ , ∂̄γ = λb2β̄e2bφ . (2.7)

Modulo these equations, our gluing conditions are equivalent to the known gluing conditions

on (φ, γ, γ̄) [11].

Let us clarify a subtlety about the derivation of the gluing conditions (2.5) for the

currents (2.4) from the gluing conditions (2.6) for the fields (φ, β, γ). This derivation should

take into account the nature of (φ, β, γ) as quantum fields, so that the currents (2.4) involve

regularized products of these fields. The regularization involves the explicit subtraction of

the singularities in the operator products; these singularities can be deduced from eq. (4.3).

Alternatively, we could do the same calculation in a classical framework which would treat

the fields as ordinary functions on the worldsheet; but in this framework the expressions

for the currents J+, J̄+ differ from our formula (2.4). The classical version of J+ is indeed

J+
cl = βγ2+2b−1γ∂φ−(k−2)∂γ, where the difference J+

cl −J+ = 2∂γ arises from regularizing

the operator product βγ2.1

Now consider the bulk action Sbulk (2.1) on the upper half-plane. Cancelling the

variations of this action implies the bulk equations of motion, plus some constraints on the

behaviour of the fields at the boundary z = z̄. It was found in [11] that these constraints

are satisfied by the gluing conditions (2.6) for all values of c. (The calculations in [11] were

actually performed using the equivalent action obtained by integrating out the fields β, β̄

1We are very grateful to the JHEP referee for helping us clarify this point.

– 3 –



J
H
E
P
0
2
(
2
0
0
8
)
0
2
4

in the path integral.) However, the bulk action by itself cannot be enough for defining the

quantum dynamics of the model, because it does not know the value of c. It is however

still possible to add a boundary term to the action provided it vanishes when the gluing

conditions (2.6) are obeyed, and we propose

Sbdy =
i

4π

∫

β
(

γ + γ̄ − cebφ
)

, β + β̄ =
z→z̄

0 , (2.8)

where the single integral
∫

=
∫

dτ means the integral over the boundary z = z̄ of the

upper half-plane. We therefore propose that in path-integral calculations the first gluing

condition is imposed as a constraint, while the last two should follow from the variational

principle applied to the action S = Sbulk + Sbdy.

Let us now study the variations of the action. Using an integration by parts and

∂ = 1
2(∂τ − i∂σ), the action is rewritten as

S = Sbulk + Sbdy =
1

2π

∫∫

(

∂φ∂̄φ − γ∂̄β − γ̄∂β̄ − λb2ββ̄e2bφ
)

− c
i

4π

∫

βebφ . (2.9)

Taking into account the constraint δ(β + β̄) =
z→z̄

0, the boundary terms in the variations of

the action are therefore

(δS)bdy =
i

4π

∫

[

−δφ
(

(∂ − ∂̄)φ + cbβebφ
)

+ δβ
(

γ + γ̄ − cebφ
)]

. (2.10)

Requiring the vanishing of the coefficients of the independent variations δφ and δβ therefore

yields the last two gluing conditions in eq. (2.6). This shows that our proposal for the

boundary action is classically sound. Not only it does not spoil the compatibility of the

desired gluing conditions with the variational principle, but also it singles out a value for

the parameter c.

3. Path-integral derivation of the relation with Liouville theory

Let us now consider the path-integral representation of a general H+
3 correlator on the

upper half-plane (which is conformally equivalent to the disc), with a number of bulk and

boundary operator insertions. We will show how this correlator is related to a Liouville

theory correlator by integrating out the fields γ, γ̄ and then β, β̄. The calculation follows

closely that of Hikida and Schomerus in the case of the sphere [10], so we will only sketch

the few most relevant points.

The relevant bulk and boundary operators, with spins j and ℓ, isospins µ and ν and

worldsheet positions z and τ respectively, are

Φj(µ|z) = |µ|2j+2eµγ(z)−µ̄γ̄(z̄)e2b(j+1)φ(z,z̄) , (3.1)

Ψℓ(ν|τ) = |ν|ℓ+1e
1
2
ν(γ(τ)−γ̄(τ))eb(ℓ+1)φ(τ) . (3.2)

The correlator to be computed is

Ω =

∫

Dφ Dβ Dβ̄ Dγ Dγ̄ e−S
n
∏

i=1

Φji(µi|zi)
m
∏

a=1

Ψℓa(νa|τa) , (3.3)
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where the constraint β + β̄ =
z→z̄

0 is implicitly understood, and the action S is given in

eq. (2.9), where the boundary parameter c can actually jump at the insertion points of

boundary operators. Note that the sign of the action is such that the Gaussian integral

over β, β̄ is convergent provided β and β̄ are complex anticonjugates. Integrating out β, β̄

would produce the well-known H+
3 sigma model [15], plus an extra boundary action.

As an aside, recall that large k limits of H+
3 correlators can then be determined thanks

to so-called minisuperspace computations. In such computations, the functional integrals
∫

Dφ Dγ Dγ̄ are replaced with ordinary integrals over the zero-modes
∫

dφ d2γ. Due to

factors ∂γ̄ or ∂̄γ, the bulk and boundary interaction terms then vanish. This provides an a

posteriori justification for the minisuperspace calculations of the bulk one-point function [6],

bulk-boundary two-point function [8], and boundary three-point function [9], which did not

involve any contributions from the then-unknown boundary action. (The results of such

minisuperspace calculations nevertheless depend on the boundary parameter c because the

zero-modes have to be integrated only over the D-brane’s world-volume.)

Let us perform the path integral over γ, γ̄. This yields delta-function constraints on

derivatives of the fields β, β̄, namely

Ω =

∫

Dφ Dβ Dβ̄ δ

(

1

2π
∂̄β(z) −

∑

i

µiδ
(2)(z − zi) −

1

2

∑

a

νaδ
(2)(z − τa)

)

× δ

(

1

2π
∂β̄(z̄) +

∑

i

µ̄iδ
(2)(z − z̄i) +

1

2

∑

a

νaδ
(2)(z − τa)

)

× · · · . (3.4)

Now, performing the path integral over β, β̄ (subject to β + β̄ =
z→z̄

0) will yield a nonzero

result only provided
∑

i(µi + µ̄i) +
∑

a νa = 0, and will force β, β̄ to adopt the values

βs(z) =
∑

i

µi

z − zi
+
∑

i

µ̄i

z − z̄i
+
∑

a

νa

z − τa
, (3.5)

β̄s(z̄) = −
∑

i

µi

z̄ − zi
−
∑

i

µ̄i

z̄ − z̄i
−
∑

a

νa

z̄ − τa
. (3.6)

Notice that the
∑

i
µ̄i

z−z̄i
terms of β(z) do not contribute to ∂̄β(z), which is defined only

in the upper half-plane whereas z̄i belong to the lower half-plane. However, such terms

are required by the assumed condition β + β̄ =
z→z̄

0. Note also the subtlety in defining

δ(2)(z − τa) when τa belongs to the boundary; the correct treatment of this subtlety (for

instance by slightly moving τa into the upper half-plane) leads to the correct numerical

factor of the term
∑

a
νa

z−τa
in βs(z).

After replacing the fields β, β̄ by their values βs, β̄s in the path integral, we should

relate φ to the Liouville field so that Ω can be interpreted as a Liouville theory correlator

(plus some simple factors). This is achieved by performing a change of variable on the field

φ so that βsβ̄se
2bφ = −e2bφ̃, where φ̃ is the Liouville field. In the case of the sphere, the

effect of this change of variable on the kinetic term
∫∫

∂φ∂̄φ could be interpreted as the

introduction of degenerate Liouville operators at the zeroes of βs, and the situation is the

same in our case of the disc. We refer to [10] for the details. The new feature in our case is

– 5 –
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the presence of the boundary term −c i
4π

∫

βse
bφ. The change of variable φ → φ̃ will only

absorb βs into the exponential up to an overall sign:

−c
i

4π

∫

βse
bφ = −c

i

4π

∫

(sgnβs) ebφ̃ . (3.7)

The value of the Liouville boundary cosmological constant (i.e. of the coefficient of
∫

ebφ̃)

is therefore

µB = −c
i

4π
sgnβs (3.8)

This relation between the H+
3 and Liouville boundary parameters, and the rest of the H+

3 -

Liouville relation on the disc whose derivation we just sketched, fully agree with the known

H+
3 -Liouville relation on the disc [8], which was originally derived by conformal bootstrap

methods. In particular, µB is pure imaginary for physical (i.e. real) values of c, and its

sign is determined by the sign of βs. This agreement amounts to an additional heuristic

argument in favour of our boundary action Sbdy (2.8).

4. Free-field formalism

The total action S (2.9) can be split into free terms, plus bulk and boundary interaction

terms corresponding to the Lagrangians

Lbulk = ββ̄e2bφ, Lbdy = βebφ . (4.1)

The free theory is subject to the simple gluing conditions (which coincide with the gluing

conditions (2.6) at c = 0)

β + β̄ = 0 ,

γ + γ̄ = 0 ,

(∂ − ∂̄)φ = 0 .

(4.2)

The non-vanishing pairings of the basic fields in the presence of such gluing conditions are

〈φ(z)φ(w)〉 = − log |z − w||z̄ − w| ,

〈β(z)γ(w)〉 = 1
w−z ,

〈

β̄(z̄)γ(w)
〉

= − 1
w−z̄ ,

〈β(z)γ̄(w̄)〉 = − 1
w̄−z ,

〈

β̄(z̄)γ̄(w̄)
〉

= 1
w̄−z̄ .

(4.3)

These correlators are consistent with the fields β, γ being holomorphic, and the fields β̄, γ̄

being antiholomorphic, as implied by their respective bulk equations of motion in the free

theory. They also agree with the gluing conditions, in the sense that

lim
z→z̄

〈

(β(z) + β̄(z̄)) · · ·
〉

= lim
z→z̄

〈(γ(z) + γ̄(z̄)) · · ·〉 = 0 . (4.4)

(For most purposes, the βγ system with conformal weights (1, 0) is actually equivalent to

a suitably normalized complex free boson ω such that β = ∂ω, β̄ = ∂̄ω, γ = ω∗

L, γ̄ = ω∗

R,

– 6 –
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where ωL, ωR are the holomorphic and antiholomorphic terms of ω respectively, and the

star denotes complex conjugation.)

Let us check that the bulk and boundary interaction terms preserve the affine symme-

tries (2.5). Our treatment of this problem is inspired from [16], where more general results

and references on perturbed boundary conformal field theories can be found. To first order

in the boundary coupling constant c, the J+ + J̄+ symmetry condition is

lim
z→z̄

〈

(J+(z) + J̄+(z̄))

∫

Lbdy(τ) · · ·

〉

= 0 . (4.5)

Notice that lim
z→z̄

〈

(J+(z) + J̄+(z̄))Lbdy(τ) · · ·
〉

vanishes for all τ due to the symmetries of

the free theory. The symmetry condition we just wrote might nevertheless fail because

of the singularities which appear as the operators J+ + J̄+ and Lbdy come close, and

which might prevent the integration over τ from commuting with the limit lim
z→z̄

. Using the

contractions (4.3), the singular terms coming from J+ are2

J+(z)Lbdy(τ) ∼
b−2

(z−τ)2
ebφ(τ)+

2b−1

z−τ
∂φ(τ)ebφ(τ) = b−2∂τ

ebφ(τ)

z − τ
−

i

z − τ
∂σφ(τ)ebφ(τ) . (4.6)

The first term is a total τ -derivative and will therefore not contribute to the τ -integral.

The second term vanishes due to the Neumann gluing condition on φ, namely ∂σφ = 0.

Similar calculations show that the singular terms coming from J̄+ also vanish, and therefore

the symmetry condition (4.5) holds. The J3 − J̄3 and J− + J̄− symmetry conditions can

similarly be checked.

Of course, this is not enough for fully establishing the current symmetries of the the-

ory. One would need to check that say lim
z→z̄

(J+(z) + J̄+(z̄)) vanishes when inserted into

correlators with arbitrary numbers of insertions of both the bulk and the boundary inter-

action terms
∫∫

Lbulk,
∫

Lbdy. The case with just one bulk interaction term can be treated

along the same lines as above, but is a bit more tedious. We abstain from displaying such

calculations, because our main aim is only to check the correctness of the boundary action.

5. Free-field calculation of the bulk one-point function

Let us demonstrate the validity of the free-field formalism by computing the bulk one-point

function. The calculation is quite similar to the free-field calculation of the bulk one-point

function in Liouville theory with Neumann boundary conditions, which was sketched in [17].

The new features of the H+
3 case are the contribution of the βγ system, and the resulting

dependence of the one-point function on the isospin µ of the bulk field. In this section we

will explicitly give the values of the relevant integrals over the worldsheet positions of the

bulk and boundary interaction terms in the H+
3 model Lagrangian, which might also be

useful for other applications.

2Notice that J̄+(z̄)Lbdy(τ ) ∼ −
b−2

(z̄−τ)2
ebφ(τ)

−
2b−1

z̄−τ
∂φ(τ )ebφ(τ), which is in accordance with the vanishing

of lim
z→z̄

˙

(J+(z) + J̄+(z̄))Lbdy(τ ) · · ·
¸

for any given τ .
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The one-point function of a bulk field Φj(µ|z) (3.1) in the presence of an AdS2 D-

brane with parameter c is expected to be amenable to a free-field calculation only for

certain quantized values of the spin j, namely

2j + 1 = −n ∈ −N . (5.1)

The one-point function actually has simple poles at such values of the spin j, whose residues

are expressed as

Res
2j+1=−n

〈

Φj(µ|z)
〉H+

3

c
=

1

2b
|µ|2j+2

∞
∑

m,ℓ=0
2m+ℓ=n

1

m!ℓ!

m
∏

i=1

∫∫

d2wi

ℓ
∏

k=1

∫

dxk

〈

eµγ(z)−µ̄γ̄(z̄)e2b(j+1)φ(z,z̄)
m
∏

i=1

λ
b2

2π
ββ̄e2bφ(wi)

ℓ
∏

k=1

ic

4π
βebφ(xk)

〉

, (5.2)

where the correlator on the second line is computed in the free theory described in the

previous section.

This correlator factorizes into independent βγ and φ correlators. Remembering that

the field φ has a background charge b, the φ correlator is non-vanishing provided 2j + 1 +

2m + ℓ = 0; this is the origin of the condition (5.1). The φ correlator is then

〈

e2b(j+1)φ(iy)
m
∏

i=1

e2bφ(wi)
ℓ
∏

k=1

ebφ(xk)

〉

=

[

ℓ
∏

k=1

(y2 + x2
k)

m
∏

i=1

|y2 + w2
i |

2

]b2(n−1)

× |2y|−
b2

2
(n−1)2 ×





∏

i,k

|wi − xk|
2
∏

i<i′

|wi − wi′ |
2
∏

i,i′

|wi − w̄i′ |
∏

k<k′

|xk − xk′ |





−2b2

. (5.3)

In the βγ correlator, integrating over the zero-modes of the field γ yields a factor 2πδ(µ+µ̄).

The rest of the computation follows from the contractions (4.3), which in particular imply

〈

eµγ(z)−µ̄γ̄(z̄)β(w)
〉

=
µ

w − z
+

µ̄

w − z̄
=

µ(z − z̄)

(w − z)(w − z̄)
. (5.4)

The actual correlator is a product of such factors,

〈

eµγ(iy)−µ̄γ̄(−iy)
m
∏

i=1

λ
b2

2π
ββ̄(wi)

ℓ
∏

k=1

ic

4π
β(xk)

〉

= 2πδ(µ + µ̄)(−)m
(

λ
b2

2π

)m

|2yµ|n
(

−
ic

4π
sgnℑµ

)ℓ m
∏

i=1

1

|y2 + w2
i |

2

ℓ
∏

k=1

1

y2 + x2
k

. (5.5)

It is already clear that, after combining the factors (5.3) and (5.5), the remainder of the

calculation is identical to the free-field calculation of the one-point function
〈

e2αφ(iy)
〉Liouville

µB

of a Liouville field with parameter α = b(j+1)+ 1
2b , in the presence of a Neumann boundary

– 8 –
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with cosmological constant µB = c i
4π sgnℑµ. The integral in eq. (5.2) amounts to taking

the special value a = 1 + b2 − b2n in the following integral:

Jn,m(a|y) =
1

m!(n − 2m)!

∫∫ m
∏

i=1

d2wi

|y2 + w2
i |

2a

∫ n−2m
∏

k=1

dxk

(y2 + x2
k)

a





∏

i,k

|wi − xk|
2
∏

i<i′

|wi − wi′ |
2
∏

i,i′

|wi − w̄i′ |
∏

k<k′

|xk − xk′ |





−2b2

, (5.6)

where as before the double integrals are over the upper half-plane, and the single integrals

over the real line. This integral can be evaluated explicitly. With the notations s(x) ≡

sin πx and Ci
n = n!

i!(n−i)! , the result is

Jn,m(a|y) =
|2y|n(1−2a−(n−1)b2)

n!

(

2π

Γ(1 − b2)

)n 2−2m

(s(b2))m
In(a)Jn,m(a) , (5.7)

where

In(a) =

n−1
∏

i=0

Γ(1 − (i + 1)b2)Γ(2a − 1 + (n − 1 + i)b2)

Γ2(a + ib2)
, (5.8)

and

Jn,m(a) =
m
∑

i=0

(−)iCm−i
n−m−i

s((n + 1 − 2i)b2)

s((n + 1 − i)b2)

i−1
∏

r=0

s((n − r)b2)s(a + (n − r)b2)

s((r + 1)b2)s(a + rb2)
. (5.9)

Let us introduce new notations for the boundary parameter c:

c = −

√

λ
8πb2

sin πb2
sinh r = −isgnℑµ

√

λ
8πb2

sin πb2
cosh σ , (5.10)

where σ = r − i
π

2
sgnℑµ . (5.11)

We now sum over the numbers of screening charges m, ℓ while keeping 2m + ℓ = n fixed

like in eq. (5.2). This summation reduces to the following formula, which can be proved

by the application of standard trigonometric identities:

[n/2]
∑

m=0

(−)m(2 cosh σ)n−2mJn,m(a) =
n
∑

i=0

cosh((n − 2i)σ)
[−nb2]i[−(n − 1)b2 − a]i

[b2]i[a]i
, (5.12)

where we use the notation [x]i ≡
∏i−1

r=0 s(x + rb2).

Actually, our calculation involves a relatively simple case of these formulas, because

it only uses particular values of the parameter a, namely the values a = 1 + b2 − b2n

with n ∈ N. In this case, only the term i = 0 survives in eq. (5.12). The bulk-boundary

two-point functions in Liouville theory and in H+
3 would involve the general case. And the

integral (5.6) might be useful for other applications.
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The result of the free-field calculation is therefore:

Res
2j+1=−n

〈

Φj(µ|iy)
〉H+

3

c
= |2y|

b2

2
(n2

−1)δ(µ + µ̄)|µ| × πb−1

(

2

λ

Γ(1 − b2)

Γ(1 + b2)

)

−
n
2

×
(−)n

n!
Γ(1 − b2n) cosh n

(

r − iπ
2 sgnℑµ

)

, (5.13)

This should be compared to the conformal bootstrap result [6, 7], which in the notations

of [18] reads:

〈

Φj(µ|iy)
〉H+

3

c
= |2y|2b2j(j+1)δ(µ + µ̄)|µ| × π(8b2)−

1
4

(

π
Γ(1 − b2)

Γ(1 + b2)

)j+ 1
2

× Γ(2j + 1)Γ(1 + b2(2j + 1)) cosh(2j + 1)
(

r − iπ
2 sgnℑµ

)

. (5.14)

We thus find agreement, provided the bulk cosmological constant is chosen as λ = 2
π , so

that the normalizations of the bulk interaction term agree. The remaining discrepancy

is just an overall numerical factor. The numerical normalization factor in eq. (5.14) was

derived in [6] by a “modular bootstrap” calculation of the annulus amplitude, whereas we

did not impose such a normalization here.

This agreement provides another test of the proposed boundary action of the H+
3

model.
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